Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Nanoscale Adv ; 5(4): 992-1010, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2271985

ABSTRACT

The current COVID-19 pandemic, with its numerous variants including Omicron which is 50-70% more transmissible than the previously dominant Delta variant, demands a fast, robust, cheap, and easily deployed identification strategy to reduce the chain of transmission, for which biosensors have been shown as a feasible solution at the laboratory scale. The use of nanomaterials has significantly enhanced the performance of biosensors, and the addition of CNTs has increased detection capabilities to an unrivaled level. Among the various CNT-based detection systems, CNT-based field-effect transistors possess ultra-sensitivity and low-noise detection capacity, allowing for immediate analyte determination even in the presence of limited analyte concentrations, which would be typical of early infection stages. Recently, CNT field-effect transistor-type biosensors have been successfully used in the fast diagnosis of COVID-19, which has increased research and commercial interest in exploiting current developments of CNT field-effect transistors. Recent progress in the design and deployment of CNT-based biosensors for viral monitoring are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of CNTs used in combination with other nanomaterials for viral detection.

2.
Environ Sci Pollut Res Int ; 29(55): 82709-82728, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2060000

ABSTRACT

Coronavirus disease 2019 (COVID-19) has delayed global economic growth, which has affected the economic life globally. On the one hand, numerous elements in the environment impact the transmission of this new coronavirus. Every country in the Middle East and North Africa (MENA) area has a different population density, air quality and contaminants, and water- and land-related conditions, all of which influence coronavirus transmission. The World Health Organization (WHO) has advocated fast evaluations to guide policymakers with timely evidence to respond to the situation. This review makes four unique contributions. One, many data about the transmission of the new coronavirus in various sorts of settings to provide clear answers to the current dispute over the virus's transmission were reviewed. Two, highlight the most significant application of machine learning to forecast and diagnose severe acute respiratory syndrome coronavirus (SARS-CoV-2). Three, our insights provide timely and accurate information along with compelling suggestions and methodical directions for investigators. Four, the present study provides decision-makers and community leaders with information on the effectiveness of environmental controls for COVID-19 dissemination.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2 , Machine Learning , World Health Organization , Africa, Northern/epidemiology
3.
Environ Sci Process Impacts ; 23(7): 923-946, 2021 Jul 21.
Article in English | MEDLINE | ID: covidwho-1559452

ABSTRACT

Globally, humanity is facing its most significant challenge in 100 years due to the novel coronavirus, SARS-CoV-2, which is responsible for COVID-19. Under the enormous pressure created by the pandemic, scientists are studying virus transmission mechanisms in order to develop effective mitigation strategies. However, no established methods have been developed to control the spread of this deadly virus. In addition, the ease in lockdown has escalated air pollution which may affect SARS-CoV-2 transmission through attachment to particulates. The present review summarizes the role of graphene nanomaterials, which show antimicrobial behavior and have antiviral efficacy, in reducing the spread of COVID-19. Graphene and its derivatives have excellent antimicrobial efficacy, providing both physical and chemical mechanisms of damage. Coupled with their lightness, optimal properties, and ease of functionalization, they are optimal nanomaterials for coating onto fabrics such as personal protection equipment, face masks and gloves to control the transmission of SARS-CoV-2 effectively. Biosensors using graphene can effectively detect the virus with high accuracy and sensitivity, providing rapid quantification. It is envisioned that the present work will boost the development of graphene-based highly sensitive, accurate and cost-effective diagnostic tools for efficiently monitoring and controlling the spread of COVID-19 and other air-borne viruses.


Subject(s)
Air Pollutants , COVID-19 , Graphite , Air Pollutants/analysis , Cities , Communicable Disease Control , Humans , India , Pandemics , SARS-CoV-2
4.
J Environ Manage ; 290: 112668, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1198881

ABSTRACT

The SARS-CoV-2 virus has spread globally and has severely impacted public health and the economy. Hand hygiene, social distancing, and the usage of personal protective equipment are considered the most vital tools in controlling the primary transmission of the virus. Converging evidence indicated the presence of SARS-CoV-2 in wastewater and its persistence over several days, which may create secondary transmission of the virus via waterborne and wastewater pathways. Although, researchers have started focusing on this mode of virus transmission, limited knowledge and societal unawareness of the transmission through wastewater may lead to significant increases in the number of positive cases. To emphasize the severe issue of virus transmission through wastewater and create societal awareness, we present a state of the art critical review on transmission of SARS-CoV-2 in wastewater and the potential remedial strategies to effectively control the viral spread and safeguard society. For low-income countries with high population densities, it is suggested to identify the virus in large scale municipal wastewater plants before following up with one-to-one testing for effective control of the secondary transmission. Ultrafiltration is an effective method for wastewater treatment and usually more than 4 logs of virus removal are achieved while safeguarding good protein permeability. Decentralized wastewater treatment facilities using solar-assisted disinfestation methods are most economical and can be effectively used in hospitals, isolation wards, and medical centers for reducing the risk of transmission from high local concentration sites, especially in tropical countries with abundant solar energy. Disinfection with chlorine, sodium hypochlorite, benzalkonium chloride, and peracetic acid have shown potential in terms of virucidal properties. Biological wastewater treatment using micro-algae will be highly effective in removal of virus and can be incorporated into membrane bio-reaction to achieve excellent virus removal rate. Though promising results have been shown by initial research for inactivation of SARS-CoV-2 in wastewater using physical, chemical and biological based treatment methods, there is a pressing need for extensive investigation of COVID-19 specific disinfectants with appropriate concentrations, their environmental implications, and regular monitoring of transmission. Effective wastewater treatment methods with high virus removal capacity and low treatment costs should be selected to control the virus spread and safeguard society from this deadly virus.


Subject(s)
COVID-19 , Water Purification , Humans , Pandemics , SARS-CoV-2 , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL